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1 Introduction

The conductivity tensor σij measures the electrical response of a conducting medium to

externally applied fields. It is defined by

〈Ji〉 = σij Ej ,

where E are externally applied electric fields and 〈Ji〉 are the electrical currents induced

in the medium. Similarly, the thermoelectric conductivity tensor αij measures the thermal

response. It is defined as

〈Qi〉 = αij Ej,

where 〈Qi〉 are heat currents induced in the medium,

〈Qi〉 = 〈T t
i〉 − µ〈Ji〉,

where 〈T i
j〉 are the components of the stress-energy tensor, so that 〈T t

i〉 are momentum

densities, and µ is the chemical potential.

Our goal in this paper is to use the anti-de Sitter / Conformal Field Theory corre-

spondence (AdS/CFT) [1–3] to compute a conductivity tensor and the contribution to the

stress-energy tensor associated with a number Nf of massive N = 2 supersymmetric hyper-

multiplet fields propagating through an N = 4 supersymmetric SU(Nc) Yang-Mills (SYM)

theory plasma at temperature T . We will study hypermultiplet fields that transform in

the fundamental representation of the gauge group, i.e. flavor fields. We will work in the

limits Nc → ∞ with the ’t Hooft coupling λ ≡ g2
Y MNc fixed, and with λ ≫ 1. We also fix

Nf such that Nf ≪ Nc, and work to leading order in Nf/Nc.

AdS/CFT equates the SYM theory in the limits above with supergravity on the ten-

dimensional spacetime AdS5 × S5, where AdS5 is (4+1)-dimensional anti-de Sitter space
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and S5 is a five-sphere [1]. We should imagine that the SYM theory “lives” on the boundary

of the AdS5 space, so in this sense AdS/CFT is “holographic.” The SYM theory in thermal

equilibrium is dual to supergravity on an AdS-Schwarzschild spacetime, where the SYM

theory temperature T is identified with the Hawking temperature of the AdS-Schwarzschild

black hole [4, 5]. The Nf hypermultiplets appear in the supergravity description as a

number Nf of D7-branes embedded in the AdS-Schwarzschild background [6]. With Nf ≪
Nc D7-branes, we may treat the branes as probes and neglect their back-reaction on the

supergravity fields. We will explain the supergravity description of the hypermultiplet mass

and the electric and magnetic fields in the sequel. Though we focus on this system, our

analysis easily extends to other probe D-brane systems.

Our work is part of a larger program of studying transport phenomena in strongly-

coupled systems using gauge-gravity duality, which provides many solvable toy models of

such systems. The study of these toy models has provided qualitative (and often quan-

titative) insight into real physical systems, including the quark-gluon plasma created at

the Relativistic Heavy-Ion Collider as well as various systems in condensed matter physics,

especially systems whose low-energy dynamics is controlled by a nearby quantum criti-

cal point.

When the Nf flavors have equal masses, the theory has a global U(Nf ) symmetry,

whose U(1)B subgroup we identify as baryon number (hence the subscript). We will denote

the U(1)B current as Jµ. We will study the theory with a finite U(1)B density 〈J t〉. We

will also introduce static external electric and magnetic fields that couple to anything with

U(1)B charge. For perpendicular electric and magnetic fields, the conductivity for this

system was computed in refs. [7, 8], while the contribution that the flavor fields make to

the stress-energy tensor was computed in ref. [9].

We will generalize the results of refs. [7–9] to completely arbitrary (constant) electric

and magnetic fields. For an arbitrary configuration of constant electric and magnetic fields,

we may sum all the electric fields into a single vector, and similarly for the magnetic fields.

The most general configuration is thus an electric field ~E pointing in some direction, which

we will take to be x̂, and a magnetic field ~B that may be decomposed into two components,

one along x̂, which we call Bx, and one perpendicular to it, along the ẑ direction, which

we call Bz. Stated simply, then, we will generalize the results of refs. [7–9] to include a

magnetic field with nonzero x̂ component, or equivalently a nonzero ~E · ~B ∼ F ∧ F .

Introducing a nonzero ~E · ~B is worthwhile for a number of reasons.1 With perpendicular

electric and magnetic fields E and Bz, we expect a current 〈Jx〉 parallel to the electric field

(because it pushes the charges) and a Hall current 〈Jy〉 orthogonal to both the electric and

magnetic field. With nonzero Bx, we expect a current 〈Jz〉, and hence we can compute

a new transport coefficient, σxz. More generally, we can compute the entire conductivity

tensor and determine its dependence on Bx. As mentioned in refs. [7–9], two types of

1The authors of ref. [10] studied transport of baryon number charge in the presence of nonzero ~E · ~B

in a holographic model of Quantum Chromodynamics, the Sakai-Sugimoto model [11]. They found that

the system behaves as a perfect conductor. The crucial ingredient there was the anomaly in the axial U(1)

current, however, which is absent in our system (more precisely, the effects of the anomaly are suppressed

in the probe limit).
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charge carriers contribute to the currents. The system has not only the charge carriers we

introduce explicitly in 〈J t〉, but also charge carriers coming from pair-production in the

external electric field. We find that, generically, Bx enhances the contribution from the

pair-produced charges.

Additionally, in a Lorentz-invariant system, we can build two Lorentz-invariant quan-

tities from ~E and ~B, namely | ~E|2 − | ~B|2 and ~E · ~B. When ~E · ~B = 0, and | ~B| > | ~E|, we

can boost to a frame where the electric field is zero, which immediately tells us that all the

physics must be equilibrium. For example, as reviewed in ref. [12], the form of the Hall

conductivity is fixed by Lorentz invariance to be 〈J t〉/Bz . When ~E · ~B is nonzero we can

no longer boost to a frame in which the electric field is zero, hence the physics cannot be

purely equilibrium.

Many (though not all) previous gauge-gravity calculations of conductivities were in

(3+1)-dimensional AdS space, so that the boundary CFT was (2+1)-dimensional [12–15],

which precludes the existence of ~E· ~B. Another drawback of the systems studied in refs. [12–

15] was translation invariance, which implies momentum conservation. The system thus has

no way to dissipate momentum, so the DC transport behavior was singular. For example,

the DC conductivity at finite density is infinite because the charge carriers, in the presence

of an external electric field but without frictional forces, accelerate forever.

The probe limit Nf ≪ Nc effectively provides a mechanism for dissipation. (A more

accurate description may be that the probe limit allows our system to mimic a dissipative

system.) As explained in more detail in refs. [7–9, 16], and as we will review below, the

charge carriers do indeed transfer energy and momentum to the N = 4 plasma, but the

rates at which they do so are of order Nc. That means that only at times of order Nc will

the charge carriers have transferred order N2
c amounts of energy and momentum to the

plasma, and hence the motion of the N = 4 SYM plasma will no longer be negligible. For

earlier times, we may treat the N = 4 SYM plasma as a motionless reservoir into which the

charge carriers may dump their energy and momentum, thus providing the charge carriers

with an (apparent) mechanism for dissipation.

As first demonstrated in ref. [9], we can compute holographically the rates at which

the charge carriers lose energy and momentum. To do so, we compute the contribution

that the charge carriers make to the stress-energy tensor of the SYM theory. The loss rates

appear in two places. First, the holographic results for the energy and momentum densities

exhibit divergences whose coefficients (using a suitable regulator) we can identify as the loss

rates. Second, the loss rates appear explicitly as components of the holographic result for

the stress-energy tensor, namely components whose upper index is the holographic (radial)

coordinate [9, 17].

Furthermore, as in ref. [9], we will study observers in the field theory who “see” no

loss rates. The simplest example is an observer who moves along with the charges: in that

frame, the charges are at rest, so obviously such an observer should not see the charges lose

energy and momentum. As in ref. [9], we can confirm that our holographic result correctly

reproduces the absence of loss rates. As mentioned in ref. [9], we can also find a second

observer who sees no loss rates, but only when ~E · ~B = 0. When ~E · ~B 6= 0, the observer

measures a current with nonzero divergence J2 ( ~E · ~B), where J2 = 〈Jµ〉〈Jµ〉. The identity
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of this observer was left as an open question in ref. [9]. Here we find that this observer’s

four-vector is in fact the magnetic field as measured by the moving charges. Much like

the holographic result for the stress-energy tensor, the loss rate J2 (~E · ~B) appears as the

coefficient of a (suitably regulated) divergence in the current itself. Notice also that, given

the ~E · ~B anomaly in this current, if we were to study transport of the charge associated

with this current we should find a special kinetic coefficient [18, 19] whose form is fixed by

the anomaly coefficient (in our case, J2) and thermodynamics (the equation of state), as

explained in ref. [20].

This paper is organized as follows. In section 2 we present a solution for the worldvol-

ume fields of probe D7-branes in the AdS-Schwarzschild background, representing a finite

baryon density of flavor degrees of freedom in the presence of external electric and magnetic

fields. In section 3 we use our gravity solution to compute the conductivity tensor associ-

ated with transport of baryon number charge. In section 4 we compute the contribution

that the flavor degrees of freedom make to the stress-energy tensor, study divergences in

the components of the stress-energy tensor and their relation to energy and momentum

loss rates, and then discuss two reference frames in which the divergences are absent. We

conclude with some suggestions for future research in section 5. We collect some technical

results in an appendix.

2 The probe D7-brane solution

In this section we present a solution of supergravity, plus probe D7-branes, describing

massive hypermultiplets propagating through an N = 4 SYM plasma with finite U(1)B
density and in the presence of external electric and magnetic fields.

The supergravity solution includes a ten-dimensional metric with a (4+1)-dimensional

AdS-Schwarzschild factor and an S5 factor. We will use an AdS-Schwarzschild metric

ds2
AdS5

= guu du2 + gtt dt2 + gxx d~x2, (2.1)

where u is the AdS radial coordinate. When we need an explicit metric, we will use

ds2
AdS5

=
du2

u2
− 1

u2

(1 − u4/u4
H)2

1 + u4/u4
H

dt2 +
1

u2
(1 + u4/u4

H) d~x2. (2.2)

The boundary is at u = 0 and the horizon is at u = uH with u−1
H = π√

2
T . Here we are

using units in which the radius of AdS is equal to one. In these units, we convert from

string theory to SYM theory quantities using α′−2 = λ. We will use an S5 metric of the

form

ds2
S5 = dθ2 + sin2 θ ds2

S1 + cos2 θ ds2
S3, (2.3)

where θ is an angle between zero and π/2 and ds2
S1 and ds2

S3 are metrics for a unit-radius

circle and 3-sphere, respectively. The supergravity solution also includes Nc units of five-

form flux through the S5, but the five-form will be irrelevant in what follows, so we omit

it.
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We next introduce Nf coincident probe D7-branes. As we will be interested only in

the U(1) part of the U(Nf ) worldvolume gauge field, the relevant part of their action will

be the Dirac-Born-Infeld (DBI) term,

SD7 = −NfTD7

∫

d8ζ
√

−det (gab + (2πα′)Fab). (2.4)

Here TD7 is the D7-brane tension, ζa are the worldvolume coordinates, gab is the induced

worldvolume metric, and Fab is the U(1) worldvolume field strength. The D7-branes will

be extended along all of the AdS5 directions, as well as the S3 directions inside the S5.

Our ansatz for the worldvolume fields will include the worldvolume scalar θ(u). The

D7-brane induced metric is then identical to the background metric, except for the radial

component, which is guu = 1
u2 + θ′(u)2, where prime denotes differentiation with respect to

u. Starting now, the notation guu will include the θ′2 term. We will discuss θ(u)’s equation

of motion, boundary conditions, and holographic dual operator later in this section.

The U(Nf ) gauge invariance of the coincident D7-branes is dual to the U(Nf ) symmetry

of the mass-degenerate flavor fields in the SYM theory. We identify the U(1) subgroup as

baryon number, U(1)B . The D7-brane worldvolume Abelian gauge field Aµ is dual to the

SYM U(1)B current Jµ, so to introduce a finite U(1)B density in the SYM theory, we must

introduce the worldvolume gauge field At(u).

To introduce electric and magnetic fields, and the resulting currents 〈Jx〉, 〈Jy〉, and

〈Jz〉, we also include in our ansatz the gauge field components

Ax(t, u) = −Et + fx(u), Ay(x, u) = Bz x + fy(u), Az(y, u) = Bx y + fz(u). (2.5)

In each case, the leading term is a non-normalizable mode that introduces an external

field into the SYM theory. Choosing a gauge in which Au = 0, we can write the nonzero

elements of Fab:

Ftx = −E, Fxy = Bz, Fyz = Bx, (2.6)

Fut = A′
t, Fux = A′

x, Fuy = A′
y, Fuz = A′

z. (2.7)

We will now write the action for our ansatz. Let us first define some notation. The

fields in our ansatz depend only on u, so in eq. (2.4) we can immediately perform the

integration over the SYM theory directions (t, x, y, z) and over the S3 directions. Starting

now we will divide both sides of eq. (2.4) by the volume of R
3,1, so SD7 will actually

denote an action density. L will denote the Lagrangian density, SD7 ≡ −
∫

duL. Using

TD7 = α′−4g−1
s

(2π)7
= λNc

25π6 , we will also define the constant

N ≡ NfTD7VS3 =
λ

(2π)4
NfNc, (2.8)

where VS3 = 2π2 is the volume of a unit-radius S3. Lastly, a tilde over a quantity denotes

a factor of (2πα′), for example, F̃ab ≡ (2πα′)Fab.

Plugging our ansatz into the action eq. (2.4), we have

SD7 = −N
∫

du cos3 θ
√

guu|gtt|g3
xx − gxxA2 − A4, (2.9)

– 5 –
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where A2 and A4 contain terms with two or four factors of F̃ab, respectively,

A2 = guugxxẼ2 + gttguu(B̃2
x + B̃2

z ) + g2
xxÃ

′2
t + gttgxx

(

Ã
′2
x + Ã

′2
y + Ã

′2
z

)

, (2.10)

A4 = gxxẼ2
(

Ã
′2
y + Ã

′2
z

)

+ gxxÃ
′2
t

(

B̃2
x + B̃2

z

)

+ guuẼ2B̃2
x + gttB̃

2
z Ã

′2
z + gttB̃

2
xÃ

′2
x

+2gttB̃xB̃zÃ
′
xÃ′

z − 2gxxẼB̃zÃ
′
tÃ

′
y. (2.11)

The action only depends on the u derivatives of At, Ax, Ay, and Az, so the system has

four constants of motion. As shown in refs. [7, 8], we can identify these as the components

of the U(1)B current density in the SYM theory,2

〈Jµ〉 =
δL

δA′
µ

. (2.12)

Our ansatz thus allows for a nonzero U(1)B density 〈J t〉 as well as U(1)B currents 〈Jx〉,
〈Jy〉, and 〈Jz〉. Given these constants of motion, we can solve algebraically for the deriva-

tives of the gauge field (the field strength components):

A′
t(u) = −

√

guu|gtt|
g2
xx + B̃2

x

〈J t〉ξ − Bza1
√

ξχ − a2
1

g2
xx+B̃2

x

+
a2
2

|gtt|gxx−Ẽ2

, (2.13a)

A′
x(u) =

√

guu

|gtt|
1

gxx

〈Jx〉ξ − Bxa2
√

ξχ − a2
1

g2
xx+B̃2

x

+
a2
2

|gtt|gxx−Ẽ2

, (2.13b)

A′
y(u) =

√

guu

|gtt|
1

gxx

〈Jy〉ξ + Ea1
√

ξχ − a2
1

g2
xx+B̃2

x

+
a2
2

|gtt|gxx−Ẽ2

, (2.13c)

A′
z(u) =

√

guu|gtt|
|gtt|gxx − Ẽ2

〈Jz〉ξ − Bza2
√

ξχ − a2
1

g2
xx+B̃2

x

+
a2
2

|gtt|gxx−Ẽ2

, (2.13d)

2As in refs. [7, 8], the D7-brane action diverges due to integration all the way to the AdS5 boundary at

u = 0, and thus requires renormalization. The recipe for the “holographic renormalization” of the D7-brane

action appears in refs. [7, 8, 21, 22]. We first introduce a cutoff at u = ǫ and then add a counterterm action

SCT to cancel the divergences as ǫ → 0. The precise expression for 〈Jµ〉 is

〈Jµ〉 = lim
ǫ→0

„

1

ǫ4
1√−γ

δSreg

δAµ(ǫ)

«

,

where γ is the determinant of the induced metric on the u = ǫ hypersurface and Sreg denotes the regulated

action: Sreg = SD7 +SCT. In the Bx = 0 case, the counterterms appearing in SCT were computed in ref. [8].

A straightforward analysis reveals that no new counterterms are necessary with nonzero Bx and that, as

in ref. [8], the counterterms do not contribute to 〈Jµ〉. Eq. (2.12) then follows for on-shell Aµ. For more

details, see the appendix of ref. [8]
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where we have defined

ξ = |gtt|g3
xx − g2

xxẼ2 + |gtt|gxx

(

B̃2
x + B̃2

z

)

− Ẽ2B̃2
x, (2.14a)

χ = |gtt|g2
xxN 2(2πα′)4 cos6 θ − (2πα′)2(〈Jx〉2 + 〈Jy〉2) (2.14b)

+(2πα′)2
( |gtt|gxx

g2
xx + B̃2

x

〈J t〉2 − |gtt|gxx

|gtt|gxx − Ẽ2
〈Jz〉2

)

,

a1 = (2πα′)2
(

|gtt|gxxBz〈J t〉 +
(

g2
xx + B̃2

x

)

E〈Jy〉
)

, (2.14c)

a2 = (2πα′)2
((

|gtt|gxx − Ẽ2
)

Bx〈Jx〉 + |gtt|gxxBz〈Jz〉
)

. (2.14d)

Notice that ξ is the value of −det (gab + (2πα′)Fab) in the (t, x, y, z) subspace. It has a form

characteristic of the (3+1)-dimensional Born-Infeld Lagrangian, (−g− 1
2gF̃ 2 − 1

4(F̃ ∧ F̃ )2).

We can obtain θ(u)’s equation of motion in two ways. We can find its Euler-Lagrange

equation of motion from the original D7-brane action, eq. (2.9), and then plug into that

equation of motion the solutions for the field strengths in eq. (2.13). Equivalently, we can

plug the solutions for the field strengths into the D7-brane action, eq. (2.9), to obtain an

effective action for θ(u), perform a Legendre transform, and then find the Euler-Lagrange

equation of motion. Plugging the solutions in eq. (2.13) into SD7, we find

SD7 = −N 2(2πα′)2
∫

du cos6 θ gxx

√

guu|gtt|
ξ

√

ξχ − a2
1

g2
xx+B̃2

x

+
a2
2

|gtt|gxx−Ẽ2

. (2.15)

The Legendre-transformed on-shell action, ŜD7, is then

ŜD7 = SD7 −
∫

du

(

A′
t

δSD7

δA′
t

+ A′
x

δSD7

δA′
x

+ A′
y

δSD7

δA′
y

+ A′
z

δSD7

δA′
z

)

= − 1

(2πα′)2

∫

du g−1
xx

√

guu

|gtt|

√

ξχ − a2
1

g2
xx + B̃2

x

+
a2

2

|gtt|gxx − Ẽ2
. (2.16)

To complete our solution, we must specify boundary conditions for the worldvolume

fields, namely θ(u) and the gauge fields.

The boundary conditions for the gauge fields were discussed in refs. [9, 23]. For At(u),

the geometry imposes a boundary condition upon us: the Killing vector corresponding to

time translations becomes degenerate at the horizon, hence for the gauge field to remain

well-defined as a one-form, we must impose At(uH) = 0. What about the other components

of the gauge field? The key point is that the calculation of the next section implicitly fixes

the values of these components at the horizon. In the next section we will demand that

the on-shell action remains real for all u. For given values of E, Bx, Bz and 〈J t〉, that

only happens for particular values of 〈Jx〉, 〈Jy〉 and 〈Jz〉. For those values of 〈Jx〉, 〈Jy〉,
and 〈Jz〉, the solutions for Ax, Ay and Az are fixed by our solutions above, and hence we

can then (working backwards) infer their values at the horizon. In other words, we will

implicitly be choosing the values of Ax, Ay, and Az at the horizon to produce exactly the

values of 〈Jx〉, 〈Jy〉 and 〈Jz〉 such that the action remains real for all u. Unfortunately,

– 7 –
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our solution for Ax(t, u) diverges at the horizon. The conductivity tensor does not depend

on the values of the gauge fields at the horizon, so it is “safe” from the divergence. The

stress-energy tensor does depend on the values at the horizon, but as explained in ref. [9],

these divergences (suitably regulated) have a sensible interpretation in the field theory as

rates of energy and momentum loss, as we will discuss in section 4. For more details on

the boundary conditions of the gauge fields, see appendix A of ref. [9].

We now turn to the boundary conditions on θ(u). The field θ(u) is holographically

dual to an operator that is given by taking ∂
∂m

of the SYM Lagrangian. We will denote

the operator as Om. The operator Om is the N = 2 supersymmetric completion of the

hypermultiplet fermions’ mass operator, and includes several terms. The exact operator

appears in ref. [23]. For our purposes, just thinking of Om as the hypermultiplet mass

operator will be sufficient. For a given solution θ(u), we can obtain the corresponding

values of m and 〈Om〉 via a near-boundary asymptotic expansion (where the powers of u

follow simply from the equation of motion),

θ(u) = θ1u + θ3u
3 + O

(

u5
)

. (2.17)

As shown in refs. [21, 22], we identify the mass as m = θ1

2πα′ and the expectation value as

〈Om〉 ∝ −2θ1 + 1
3θ3

3.

When At(u) is zero, we have two topologically distinct ways to embed the D7-brane

in the AdS-Schwarzschild background. The first type of embedding is a “Minkowski em-

bedding,” in which the worldvolume S3 shrinks as we move along the D7-brane away from

u = 0 and eventually collapses to a point at some u = u′ outside the horizon, u′ < uH .

We then have the boundary conditions θ(u′) = π
2 , such that cos θ(u′) = 0 and the S3 has

zero volume, and θ′(u′) = ∞, so that the D7-brane does not develop a conical singularity

when the S3 collapses to zero volume [22]. The D7-brane then does not extend past u′,
but rather appears to end abruptly at u′.

The second type of embedding is a “black hole” embedding, in which the S3 shrinks but

does not collapse, and the D7-brane intersects the horizon. We can then choose the value

of θ(u) at the horizon, θ(uH) ∈ [0, π
2 ), while for the derivative we must have θ′(uH) = 0 for

the embedding to be static.

When At(u) is zero, a discontinuous (first order) transition between the two types of

embeddings occurs as a function of m/T . The transition has been studied in great detail [22,

24–30]. Roughly speaking, large values of m/T (above a critical value) correspond to

Minkowski embeddings while small values of m/T correspond to black hole embeddings.

As argued in ref. [23], however, when At(u) is nonzero, only black hole embeddings are

allowed, for a simple physical reason. With nonzero At(u), the D7-brane has a worldvolume

electric field pointing in the u direction, Ftu. What source produces the electric field? The

simplest possible source is a density 〈J t〉 of strings ending on the D7-brane. (Such a picture

is nicely consistent with the field theory picture of a U(1)B density 〈J t〉.) A straightforward

analysis then shows that the force the strings exert on the D7-brane is greater than the

tension of the D7-brane [23]. We thus expect the strings to pull the D7-brane into the black

hole, producing a D7-brane black hole embedding with electric field lines in the u direction.
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As shown numerically in ref. [23], we then have a one-to-one map between values of

θ(uH) (the free parameter in the bulk) and m = 1
2πα′ θ1 (the free parameter near the

boundary). In what follows we will not solve numerically for θ(u), however, we know the

solution for θ(u) in two limits. The first limit is m = 0, which corresponds to the trivial

solution θ(u) = 0 and hence has θ(uH) = 0. The second limit is m → ∞, where θ(uH) → π
2 .

The phase diagram of our system has not been explored for all values of T , m, 〈J t〉,
E, Bz, and Bx. To date, only certain regions, with some subset of the parameters nonzero,

have been explored [22–43]. Where in the phase diagram will our results be valid? Our

calculation of the conductivity will rely on the fact that the D7-brane intersects the horizon,

so our results should be applicable in any region of the phase diagram whose description

in supergravity is a D7-brane black hole embedding.

Crucially, however, as shown in refs. [31, 32, 36, 37], for the case with Bz nonzero

but 〈J t〉, E and Bx zero, an infinite number of solutions describing m = 0 exist, and all

but one are unstable. The stable solution is not the trivial solution θ(u) = 0. On general

grounds, we expect that the same should be true for our solution, which has nonzero 〈J t〉,
E and Bx. Nevertheless, whenever we consider the zero mass limit, we will use the trivial

solution as a simple example.

3 The conductivity tensor

From eq. (2.14a), we see that ξ is negative at the horizon but positive at the boundary,

thus ξ must change sign at some value of u, which we will call u∗. We can straightforwardly

calculate u∗ from the equation3 ξ(u∗) = 0,

u4
∗

u4
H

= G −
√

G2 − 1, (3.1)

with

G ≡ e2 − b2
z − b2

x +

√

(e2 − b2
z)

2 + (b2
x + 1) (b2

x + 1 + 2 (e2 + b2
z)), (3.2)

where we have introduced the dimensionless quantities

e ≡ πα′u2
H E =

E
π
2

√
λT 2

, bz ≡ πα′u2
H Bz =

Bz

π
2

√
λT 2

, bx ≡ πα′u2
H Bx =

Bx

π
2

√
λT 2

. (3.3)

Later we will need g2
xx evaluated at u∗ in order to translate our result for the conductivity

tensor into SYM theory quantities. Using eq. (3.1), we find

g2
xx(u)|u=u∗

=
π4T 4

2
(1 + G) ≡ π4T 4F(e, bx, bz), (3.4)

where in the last step we removed a factor of π4T 4 and defined the rest to be F(e, bx, bz),

which will appear in our result for the conductivity tensor. A useful limit is e = 0, where

G = 1 and hence F = 1.

3We actually find four solutions for u4
∗/u4

H . The one we present is the only one for which u4
∗/u4

H takes

physical values, between 0 and 1.
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Following refs. [7, 8], we now focus on the on-shell action, eq. (2.15), and in particular

we focus on the square root in the denominator of eq. (2.15), which we reproduce here

for convenience,

√

ξχ − a2
1

g2
xx + B̃2

x

+
a2

2

|gtt|gxx − Ẽ2
,

and which also appears in the solutions for the field strengths A′
µ(u) for µ = t, x, y, z,

eq. (2.13), as well as the Legendre-transform of the on-shell action, eq. (2.16). We will

argue that the four functions ξ, χ, a1 and a2, must all vanish at u∗ in order for the above

square root, and hence the on-shell action, to remain real for all u.

When ξ = 0 the a2
2 term is negative, because the equation ξ(u∗) = 0 itself tells us that

(

|gtt|gxx − Ẽ2
)

= − |gtt|gxxB̃2
z

(g2
xx+B̃2

x)
< 0 at u∗. To avoid an imaginary action at u∗ we must have

a1(u∗) = a2(u∗) = 0.

Arguing why χ has to vanish at u∗ is more subtle. χ has the same behavior as ξ: it

is positive at the boundary and negative at the horizon, so it must have a zero at some u

value, which we will call uχ. If u∗ and uχ are not the same, so that ξ and χ have distinct

zeroes, then the product ξχ will be negative on the interval between u∗ and uχ. The

crucial question then is whether the a2
2 term is positive or negative on that interval. If it

is positive (and sufficiently large) it could keep the action real. The sign of the a2
2-term

is determined by
(

|gtt|gxx − Ẽ2
)

, which (like ξ and χ) is positive at the boundary and

negative at the horizon, and hence must have have a zero at some value of u that we will

call uE2. We showed above that
(

|gtt|gxx − Ẽ2
)

is negative at u∗, so the zero must obey

uE2 < u∗ (it is closer to the boundary than u∗). Now suppose χ changes sign at uχ > u∗.
As we just showed, the a2

2 term is negative there, so the on-shell action would be imaginary

on the interval (u∗, uχ), hence we demand uχ ≤ u∗. We want to exclude the possibility

that uχ < u∗. We know that uE2 is also less than u∗, so we must compare uχ and uE2. If

uχ < uE2, then the on-shell action is imaginary on the interval (uE2, u∗), and if uχ > uE2,

the action is imaginary on the interval (uχ, u∗). In order for the on-shell action to remain

real for all u, then, we demand that uχ = u∗.

The upshot is that we obtain four equations, ξ(u∗) = χ(u∗) = a1(u∗) = a2(u∗) = 0,

for four unknows, u∗, 〈Jx〉, 〈Jy〉, and 〈Jz〉. The equation ξ(u∗) = 0 gives us u∗, as we

explained above. We will now solve for the currents 〈Jx〉, 〈Jy〉, and 〈Jz〉.

The equation a1(u∗) = 0 gives us 〈Jy〉, while the equation a2(u∗) = 0 gives us 〈Jz〉.
We then plug the results for 〈Jy〉 and 〈Jz〉 into χ(u∗) = 0 to find 〈Jx〉. The result for the

current in each case includes an overall factor of E, so invoking Ohm’s law 〈J i〉 = σix E,
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we identify the components of the conductivity tensor:

σxx =
g2
xx + B̃2

x

gxx

(

g2
xx + B̃2

x + B̃2
z

) × (3.5a)

×
√

N 2(2πα′)4gxx

(

g2
xx + B̃2

x + B̃2
z

)

cos6 θ(u∗) + (2πα′)2〈J t〉2

σxy =
(2πα′)B̃z〈J t〉
g2
xx + B̃2

x + B̃2
z

(3.5b)

σxz =
B̃xB̃z

g2
xx + B̃2

x

σxx (3.5c)

where all functions of u are evaluated at u∗. In analogy with eq. (3.3), we define

ρ ≡ πα′u2
H 〈J t〉 =

〈J t〉
π
2

√
λT 2

. (3.6)

We then use the result for g2
xx(u∗) in eq. (3.4) to write the components of the conductivity

tensor in terms of SYM theory quantities

σxx =

√

N2
f N2

c T 2

16π2

(F + b2
x)2√

F(F + b2
x + b2

z)
cos6 θ(u∗) +

ρ2(F + b2
x)2

F(F + b2
x + b2

z)
2

(3.7a)

σxy =
ρ bz

F + b2
x + b2

z

(3.7b)

σxz =
bx bz

F + b2
x

σxx . (3.7c)

As in refs. [7, 8], the result for σxx includes two terms adding in quadrature. As

discussed in refs. [7–9], these two terms have different physical interpretations. The system

has two types of charge carriers. First we have the density of charge carriers we introduced

explicitly in 〈J t〉, whose contribution appears as the second term under the square root in

σxx. Even when 〈J t〉 = 0 we find a nonzero σxx and hence a nonzero current, however, so

the system must have some other source of charge carriers.

The other type of charge carriers come from pair production in the electric field. Their

contribution appears as the term in σxx with the cos6 θ(u∗) factor. We have two pieces of

evidence that suggests the cos6 θ(u∗) term represents pair production. First is the behavior

of the pair-production term as a function of the mass m. When m → ∞, so that the pair

production should be suppressed, we indeed have cos6 θ(u∗) → 0, while when m → 0, so

that the pair production should be maximal, we have cos6 θ(u∗) → 1. Second, as shown

in ref. [9] for the case with Bx = 0, when the density 〈J t〉 = 0 the flavor fields have zero

momentum in the x̂ direction, which is consistent with pair production: the oppositely-

charged particles in each pair move in opposite directions, producing a finite 〈Jx〉 but zero

net momentum. For our case, with Bx 6= 0, we see that σxz ∝ σxx, so both types of charge

carriers contribute to 〈Jz〉, too. Using our results for the stress-energy tensor in section 4,

in particular for 〈T t
x〉 and 〈T t

z〉, we can show that when 〈J t〉 = 0, the flavor fields have

zero momentum in the x̂ and ẑ directions, so we again find a nicely consistent picture.
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We will now check our result in two limits.

First, as a mild check, we set Bx = 0, which reproduces the result of ref. [8], in which
~E and ~B were perpendicular.

Second, following refs. [7, 8], we can also take a limit of large mass. More specifically,

we take m to be much larger than any other scale in the problem, which includes not only

T but also the scale of thermal corrections to the energy of a heavy quark, 1
2

√
λT [44]. We

will call this the “m → ∞” limit. As explained in section 2, in that limit, θ(u) → π
2 and

hence cos6 θ(u∗) → 0.

In this limit, we expect the charge carriers to behave as classical quasi-particles ex-

periencing a drag force due to the N = 4 SYM plasma and a Lorentz force due to the

external electric and magnetic fields. Our answer for the conductivity should then reduce

to the Drude form. Let us briefly review what the Drude result is. Consider a density

〈J t〉 of massive quasi-particles propagating through an isotropic, homogeneous, dissipative

neutral medium. In the rest frame of the medium we introduce an electric field ~E in the x̂

direction, and a magnetic field ~B with a component Bz in the ẑ direction and a component

Bx in the x̂ direction. The force on a quasi-particle is then

d~p

dt
= ~E + ~v × ~B − µ~p, (3.8)

where our quasi-particle has charge +1 and µ is a drag coefficient. We replace the mo-

mentum with the velocity using ~p = M~v for quasi-particle mass M . We then replace the

velocity with the induced current using ~v = 〈 ~J〉/〈J t〉. Imposing the steady-state condition
d~p
dt

= 0 and solving for 〈 ~J〉 yields

σxx = σ0
(Bx/µM)2 + 1

| ~B|2/(µM)2 + 1
, σxy = σ0

(Bz/µM)

| ~B|2/(µM)2 + 1
, σxz = σ0

(Bx/µM)(Bz/µM)

| ~B|2/(µM)2 + 1
,

(3.9)

where σ0 = 〈J t〉/µM is the conductivity when ~B = 0.

To show that our answer reduces to the Drude result, eq. (3.9), when m → ∞, we need

to know what µM is for our charge carriers, that is, we must compute the drag force on

the charge carriers, following refs. [7, 8]. We begin by rewriting the force law eq. (3.8), in

the steady state, as

µ|~p| =

√

E2 + |~v × ~B|2 + 2~E · (~v × ~B)

=
√

E2 + v2
y(B

2
x + B2

z ) + (vzBx − vxBz)2 + 2ExvyBz . (3.10)

As m → ∞, pair creation will be suppressed and only the charge carriers in 〈J t〉 will

contribute to 〈 ~J〉, hence we may write 〈 ~J〉 = 〈J t〉~v, where we drop the cos θ(u∗) terms in

〈Jx〉 and 〈Jz〉, as these vanish in our m → ∞ limit. Notice that all components of the

conductivity tensor are then proportional to 〈J t〉, so from our answer for the conductivity

tensor we find the components of ~v = 〈 ~J〉/〈J t〉 as functions of E, Bx and Bz. What is more

instructive, however, is to use the original equations ξ(u∗) = χ(u∗) = a1(u∗) = a2(u∗) = 0

to write ~v in terms of gxx(u∗) and gtt(u∗). For example, the speed of the heavy charge
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carriers is

|~v| =

√

|gtt|
gxx

∣

∣

∣

∣

∣

u∗

, (3.11)

which is the local speed of light at u∗. The drag force is

µ|~p| =
1

2πα′
√

|gtt(u∗)|gxx(u∗), (3.12)

which is simply the Nambu-Goto Lagrangian (density) for a string extended in the x̂

direction, sitting at fixed radial position u∗. Following refs. [7, 8, 44, 45], if we employ

the relativistic relation |~p| = γMv with γ = 1√
1−v2

and M the quasi-particle mass, then

we find

µM =
1

2πα′
√

gxx(u∗)2 − |gtt(u∗)|gxx(u∗) =
π

2

√
λT 2 , (3.13)

which is identical to the zero-density result of refs. [44, 45] and the finite density results of

refs. [7, 8], but now with nonzero Bx. That we recover the same answer is not surprising

in the probe limit Nf ≪ Nc. In the probe limit, the flavor excitations are too dilute

to experience a significant number of collisions with one another. Most of their energy

loss comes from their interactions with the N = 4 SYM plasma, rather than with other

flavor excitations, hence the drag force is independent of 〈J t〉. See refs. [8, 16] for more

detailed explanations.

We can now compare to the Drude form eq. (3.9). We take m → ∞, so that

cos6 θ(u∗) → 0 in the conductivity tensor. We also “linearize” in the electric field, that is,

we consider the regime of linear response, where the currents are linear in E and hence the

conductivity is constant in E. (Recall that the Drude form relies on Maxwell’s equations,

which are linear.) In practical terms, that means setting E = 0 in our result for the con-

ductivity. That means we take F(e = 0, bx, bz) = 1 as explained above. Lastly, using our

identification of µM in eq. (3.13), we can write

ρ =
〈J t〉

π
2

√
λT 2

=
〈J t〉
µM

, (3.14)

and similarly for bx and bz (recall eq. (3.3)). We immediately find that our result for the

conductivity tensor is identical to the Drude form, eq. (3.9).

Finally, given that the novelty of our result is the presence of Bx, we can take limits

that highlight the effects of Bx. For example, we can show that, generically, Bx enhances

the process of pair production. We first linearize in the electric field again, so F = 1, and

then isolate the pair-production term by taking zero density (〈J t〉 = 0, hence ρ = 0). The

result for σxx is then

σxx =
NfNcT

4π

1 + b2
x

√

1 + b2
x + b2

z

cos3 θ(u∗). (3.15)

If we further consider bx ≫ bz, then we see that σxx has a
√

1 + b2
x factor. Clearly,

increasing Bx increases the contribution to 〈Jx〉 from pair production. Conversely, if we
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suppress the pair production by taking m → ∞, so that cos6 θ(u∗) → 0, while keeping 〈J t〉
finite, then σxx reduces to

σxx = ρ
1 + b2

x

1 + b2
x + b2

z

, (3.16)

(which is of course the Drude result from eq. (3.9)) so that now taking bx ≫ bz we find

that σxx → ρ. Increasing Bx does not enhance the contribution to 〈Jx〉 coming from the

net density 〈J t〉 of charge carriers. (By contrast, the limit bz ≫ bx clearly suppresses both

contributions to the current.)

4 The stress-energy tensor

In this section we use our holographic setup to compute the contribution that the flavor

fields make to the expectation value of the stress-energy tensor of the field theory. We will

call this contribution 〈T µ
ν〉. We also identify certain divergences in the stress-energy tensor

which are related to the rates of energy and momentum loss of the charge carriers (the

flavor fields). We also discuss two special quantities that are free from these IR divergences.

This section is a direct extension of the results of ref. [9] to include nonzero Bx.

Many contributions to the stress-energy tensor come simply from the electric polariza-

tion and the magnetization of the medium, as we will now review. Even in an equilibrium

system, background electric and magnetic fields produce non-vanishing momentum currents

due to polarization effects, so that we expect a contribution to 〈Tµν〉 of the form

〈T µ
ν〉pol = Mµ

σ F σ
ν . (4.1)

where Mµν is the polarization tensor,

Mµσ = − δΩ

δFµσ
, (4.2)

with Ω the free energy density (and where we take the variation with other variables

held fixed). The components of Mµσ with one t index and one spatial index are elec-

tric polarizations while components with two spatial indices are magnetizations. The full

energy-momentum tensor 〈T µ
ν〉 then divides into two pieces:

〈T µ
ν〉 = 〈T µ

ν〉fluid + 〈T µ
ν〉pol, (4.3)

where, for example, 〈T t
i〉fluid corresponds to the genuine momentum current due to the

flow in the medium. Both 〈T µ
ν〉 and 〈T µ

ν〉fluid obey the same (non-)conservation equation,

∂µ〈Tµν〉 = Fνρ〈Jρ〉, (4.4)

but only 〈T µ
ν〉fluid represents observable quantities that can couple to external probes of

the system (and hence is the appropriate object to use when studying transport).

In gauge-gravity duality, we identify Ω = −SD7, where here SD7 is the D7-brane action

evaluated on a particular solution for the worldvolume fields, so that

Mµν =
δSD7

δFµν
. (4.5)
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As an explicit example, consider for example the calculation of M tx. We start with eq. (2.4),

evaluated on a particular solution. The on-shell action SD7 will have explicit E dependence,

as well as implicit dependence through the solutions for θ(u) and the worldvolume gauge

fields. We thus employ the chain rule,4

dSD7

dE
= −

∫

du

[

∂L

∂E
+

∂θ

∂E

∂L

∂θ
+

∂θ′

∂E

∂L

∂θ′
+

∑

µ=t,x,y,z

∂A′
µ

∂E

∂L

∂A′
µ

]

. (4.6)

We then use the fact that partial derivatives commute to write ∂
∂E

∂
∂u

= ∂
∂u

∂
∂E

, and integrate

by parts to find

dSD7

dE
= −

∫

du

[

∂L

∂E
+

(

∂L

∂θ
− ∂

∂u

∂L

∂θ′

)

∂θ

∂E
−

∑

µ=t,x,y,z

∂Aµ

∂E

∂

∂u

∂L

∂A′
µ

]

− ∂θ

∂E

∂L

∂θ′

∣

∣

∣

∣

uH

0

−
∑

µ=t,x,y,z

∂Aµ

∂E

∂L

∂A′
µ

∣

∣

∣

∣

∣

uH

0

. (4.7)

Of the terms under the integral, the term in parentheses and the terms in the sum over µ

vanish due to the equations of motion. That leaves the ∂L
∂E

term under the integral, and

the boundary terms. The main point is that the only contribution to the polarization from

the bulk of AdS5 comes from ∂L
∂E

. Similar statements apply for the magnetizations, for

example, for Mxy the only bulk term comes from ∂L
∂Bz

.

In fact, we find that all six components of the polarization tensor are nonzero. All

three electric polarizations, M ti with i = x, y, z, are nonzero, despite the fact that our

solution describes an electric field only in the x̂ direction. In other words, if, for example,

we introduce an electric field in the ŷ direction, Ey, take the variation of SD7 with respect

to Ey, and then set Ey = 0, we find a nonzero answer. Similarly, all three components of

the magnetization are nonzero although our solution only includes Bx and Bz. In all cases

the only bulk contribution is from a ∂L
∂Fµν

term, evaluated on our solution (where only Ex,

Bx and Bz are nonzero). We present explicit expressions for the derivatives ∂L
∂Fµν

in the

appendix. We will shortly see the derivatives ∂L
∂Fµν

appearing in the stress-energy tensor.

Most of these arise from the expected contribution to 〈Tµν〉 from 〈T µ
ν〉pol.

We now come to the calculation of the stress-energy tensor. As explained in ref. [9],

we may invoke the Hamiltonian form of the AdS/CFT correspondence [3], which allows us

to equate conserved charges in the boundary field theory and the bulk gravity theory. For

example, if pi denotes the momentum associated with the flavor fields in the SYM theory,

with i = x, y, z, then in the Hamiltonian framework we identify the conserved charges

pi =

∫

dt d~x 〈T t
i〉 =

∫

dt d~x du d3α
√−gD7 U t

i. (4.8)

The α are coordinates on the S3 wrapped by the D7-branes, gD7 is the determinant of

the induced metric on the D7-branes, and U t
i is the D7-branes’ momentum density. If

the energy-momentum tensors are independent of the four spacetime coordinates, then the

4We are using arguments similar to those in refs. [30, 36, 46].
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integrals over dt d~x will only produce a factor of the spacetime volume, so that we can

equate the momentum densities directly:

〈T t
i〉 =

∫

du d3α
√−gD7 U t

i. (4.9)

To compute the stress-energy tensor of the flavor fields, then, we must compute the stress-

energy tensor of the D7-branes, Θa
b, defined as

Θa
b ≡

∫

du d3α
√−gD7 Ua

b. (4.10)

When the indices a and b are in SYM theory directions, we can identify 〈T a
b〉 = Θa

b. The

indices a and b can also be in the u or S3 directions, however, in which case the SYM

theory interpretation is more difficult. Following ref. [9], we will be able to provide a field

theory interpretation for some, but not all, components.

We can compute Θa
b in two different ways. One way is to compute the variation of

the D7-brane action, SD7, with respect to the background metric. The other way is to use

a Noether procedure, since the momenta are the generators of translation symmetries. We

have used both methods and have found perfect agreement. The calculation by variation

of the action is longer and more difficult than the Noether procedure, however, so we will

not present it. The result of the Noether procedure is

Θa
b = −

∫

du

(

Lδa
b + 2Fcb

δL

δFac
− ∂bθ

δL

δ∂aθ

)

, (4.11)

where we have performed the trivial integration over the S3.

We expect the last term in eq. (4.11) to contribute to T u
u, given our ansatz θ(u). We

find, however, that the last term in eq. (4.11) also contributes to the T µ
u components with

µ = t, x, y, z. In other words, suppose we allow θ to depend on t, x, y, z. We then find that,

taking the derivatives δL
δ∂µθ

, with µ = t, x, y, z, and then setting ∂µθ = 0 produces a nonzero

result. This is very similar to what we saw for the polarization tensor above, where all six

components were nonzero even though our solution has only E, Bx and Bz nonzero. We

write explicit expressions for the derivatives δL
δ∂µθ

in the appendix.

We will now present all the components of the stress-energy tensor.

In the S3 directions the only components are on the diagonal, and all are simply

−
∫

duL = SD7. The nontrivial components are in the (u, t, x, y, z) subspace. For nota-

tional simplicity, we will identify current components, 〈Jµ〉, whenever possible, and we will

not write
∫

du, which appears for every component. Primes denote ∂
∂u

.

The components with upper index t are

Θt
t = −L − Fxt

δL
δFtx

− Fut
δL

δFtu
= −L + Ex

∂L
∂Ex

+ 〈J t〉A′
t

Θt
x = −Fux

δL
δFtu

− Fyx
δL

δFty
= 〈J t〉A′

x − ∂L
∂Ey

Bz

Θt
y = −Fxy

δL
δFtx

− Fzy
δL

δFtz
− Fuy

δL
δFtu

= Bz
∂L
∂Ex

− Bx
∂L
∂Ez

+ 〈J t〉A′
y

Θt
z = −Fyz

δL
δFty

− Fuz
δL

δFtu
= Bx

∂L
∂Ey

+ 〈J t〉A′
z

Θt
u = −Fxu

δL
δFtx

− Fyu
δL

δFty
− Fzu

δL
δFtz

+ θ′ δL
δ∂tθ

= −A′
x

∂L
∂Ex

− A′
y

∂L
∂Ey

− A′
z

∂L
∂Ez

+ θ′ δL
δ∂tθ
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The components with upper index x are

Θx
t = −Fut

δL
δFxu

= 〈Jx〉A′
t

Θx
x = −L − Ftx

δL
δFxt

− Fyx
δL

δFxy
− Fux

δL
δFxu

= −L + Ex
∂L
∂Ex

+ Bz
∂L
∂Bz

+ 〈Jx〉A′
x

Θx
y = −Fzy

δL
δFxz

− Fuy
δL

δFxu
= −Bx

∂L
∂By

+ 〈Jx〉A′
y

Θx
z = −Fyz

δL
δFxy

− Fuz
δL

δFxu
= −Bx

∂L
∂Bz

+ 〈Jx〉A′
z

Θx
u = −Ftu

δL
δFxt

− Fyu
δL

δFxy
− Fzu

δL
δFxz

+ θ′ δL
δ∂xθ

= A′
t

∂L
∂Ex

+ A′
y

∂L
∂Bz

− A′
z

∂L
∂By

+ θ′ δL
δ∂xθ

The components with upper index y are

Θy
t = −Fxt

δL
δFyx

− Fut
δL

δFyu
= Ex

∂L
∂Bz

+ 〈Jy〉A′
t

Θy
x = −Fux

δL
δFyu

− Ftx
δL

δFyt
= Ex

∂L
∂Ey

+ 〈Jy〉A′
x

Θy
y = −L − Fxy

δL
δFyx

− Fzy
δL

δFyz
− Fuy

δL
δFyu

= −L + Bz
∂L
∂Bz

+ Bx
∂L
∂Bx

+ 〈Jy〉A′
y

Θy
z = −Fuz

δL
δFyu

= 〈Jy〉A′
z

Θy
u = −Ftu

δL
δFyt

− Fxu
δL

δFyx
− Fzu

δL
δFyz

+ θ′ δL
δ∂yθ

= A′
t

∂L
∂Ey

− A′
x

∂L
∂Bz

+ A′
z

∂L
∂Bx

+ θ′ δL
δ∂yθ

The components with upper index z are

Θz
t = −Fxt

δL
δFzx

− Fut
δL

δFzu
= −Ex

∂L
∂By

+ 〈Jz〉A′
t

Θz
x = −Fux

δL
δFzu

− Ftx
δL

δFzt
− Fyx

δL
δFzy

= Ex
∂L
∂Ez

− Bz
∂L
∂Bx

+ 〈Jz〉A′
x

Θz
y = −Fxy

δL
δFzx

− Fuy
δL

δFzu
= −Bz

∂L
∂By

+ 〈Jz〉A′
y

Θz
z = −L − Fyz

δL
δFzy

− Fuz
δL

δFzu
= −L + Bx

∂L
∂Bx

+ 〈Jz〉A′
z

Θz
u = −Ftu

δL
δFzt

− Fxu
δL

δFzx
− Fyu

δL
δFzy

+ θ′ δL
δ∂zθ

= A′
t

∂L
∂Ez

+ A′
x

∂L
∂By

− A′
y

∂L
∂Bx

+ θ′ δL
δ∂zθ

The components with upper index u are

Θu
t = −Fxt

δL
δFux

= −〈Jx〉Ex

Θu
x = −Ftx

δL
δFut

− Fyx
δL

δFuy
= 〈J t〉Ex + 〈Jy〉Bz

Θu
y = −Fxy

δL
δFux

− Fzy
δL

δFuz
= −〈Jx〉Bz + 〈Jz〉Bx

Θu
z = −Fyz

δL
δFuy

= −〈Jy〉Bx

Θu
u = −L − ∑

µ=t,x,y,z Fµu
δL

δFuµ
+ θ′ δL

δθ′
= −L +

∑

µ=t,x,y,z〈Jµ〉A′
µ + θ′ δL

δθ′

All quantities on the right-hand sides are evaluated on-shell.

We would like to convert the components of Θa
b to field theory quantities. In most

cases, whether we can do so depends on whether we can perform the u integration. Some-

times this is easy. For example, we know that
∫

duL = −SD7 = Ω, and
∫

duA′
t(u) = −µ,

where µ is the U(1)B chemical potential. In some cases we can translate to SYM theory

quantities without doing the u integrals. For instance, terms with the derivatives ∂L
∂Fµν

multiplying the u-independent quantities Ex, Bx, or Bz we can interpret as contributions

from the polarization tensor, as explained above. On the other hand, we have not found a

field theory interpretation for the components Θµ
u with µ = t, x, y, z because the u integra-

tion is non-trivial. For many components, converting to SYM theory quantities requires

integrating A′
x, A′

y, or A′
z, for which the field theory meaning is not immediately clear.
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As discussed in ref. [9] (following ref. [17]), the components Θu
µ, with µ = t, x, y, z,

do have a clear interpretation in the SYM theory: they are proportional to rates of en-

ergy or momentum loss. To explain this, we return to the field theory side of the cor-

respondence. Recall that in the presence of background electric and magnetic fields, the

(non-)conservation law for the stress-energy tensor was

∂µ〈Tµν〉 = Fνρ〈Jρ〉. (4.12)

For our spatially homogeneous solution, all the spatial derivatives on the left-hand side

will vanish, leaving only the time derivatives. With our background fields and current, we

thus have

∂t〈T t
t〉 = −E〈Jx〉 (4.13)

∂t〈T t
x〉 = E〈J t〉 + Bz〈Jy〉

∂t〈T t
y〉 = −Bz〈Jx〉 + Bx〈Jz〉

∂t〈T t
z〉 = −Bx〈Jy〉.

Our system also has a net density of charge carriers in an external electric field. The

electric field is thus doing net work on the system. The charge carriers (the flavor degrees

of freedom) will transfer energy and momentum to the N = 4 SYM plasma, so that, over

time, the N = 4 SYM plasma will heat up, and begin to move. Eq. (4.13) tells us the rates

at which the energy and momentum of the flavor degrees of freedom are changing.

The energy and momentum loss rates on the right-hand-side of eq. (4.13) are identical

to the components of the stress-energy tensor with upper index u and lower index µ =

t, x, y, z, the Θu
µ, up to a constant factor. In the expressions above for the Θu

µ, the

constant factor comes from the integration over u (suppressed for notational clarity), which

produces a factor
∫ uH

0 du = uH =
√

2
πT

. The holographic calculation thus encodes the energy

and momentum loss rates in the components of the stress-energy tensor with upper index

u, as previously discussed in refs. [9, 17].

As an important aside, notice that our system has translation invariance, which implies

momentum conservation. In other words, the system appears to have no mechanism for

dissipation of momentum. Why then do we find a finite Ohmic conductivity, σxx? The

answer comes from the probe limit, Nf ≪ Nc. The very dilute flavor degrees of freedom will

indeed transfer energy and momentum to the far more numerous N = 4 SYM degrees of

freedom, but the rates at which they do so are of order NfNc, as we can see from eq. (4.13).

The rates go as factors of the 〈Jµ〉 components times the external fields E, Bx and Bz. The

〈Jµ〉 that we study are order NfNc, while the external fields are order one in the large Nc

counting. We may thus conclude that only after a time on the order of Nc will the flavor

degrees of freedom have transferred an order N2
c amount of energy and momentum to the

N = 4 SYM plasma. For earlier times, we may safely ignore the motion of the plasma,

that is, the plasma will act as a reservoir into which the flavor fields may “dump” energy

and momentum. For those early times, then, the probe limit allows the system to mimic a

dissipative system, and hence we find our finite Ohmic conductivity. At late times (on the
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order of Nc), however, we could no longer ignore the motion of the plasma (and hence we

would need to do a new calculation of the conductivity and stress-energy tensors).

Back on the supergravity side of the correspondence, the loss rates in eq. (4.13) also

appear as divergences in the corresponding components of the D7-brane’s stress-energy

tensor, as explained in ref. [9]. Specifically, the energy and momentum densities Θt
µ

exhibit divergences coming from the u = uH endpoint of the u integration (which was

suppressed for notational clarity above). Such divergences are familiar from the dragging

string solution of refs. [44, 45], which represented a field theory process in which a single

heavy charge carrier lost energy and momentum to the SYM plasma. We are thus not too

surprised to see similar divergences here, where we have a density of charge carriers.

The divergences in Θt
µ appear to come from two sources. One is a divergence in our

solution for A′
x(u). If we Taylor expand our solution for A′

x(u) in powers of |gtt|, we find

A′
x(u) = −E

√

guu

|gtt|
+ O

(

√

|gtt|
)

, (4.14)

so that
∫

duA′
x(u), which appears in Θt

x, produces a divergence at the u = uH endpoint.

In contrast, the other field strengths, A′
t(u), A′

y(u), and A′
z(u), all vanish at the horizon

(the leading term in their expansions in
√

|gtt|) and hence these produce no divergences

at u = uH .

The second source of divergences is from the derivatives ∂L
∂Ei

with i = x, y, z. These

are the bulk contributions to the electric polarizations, as explained above. Performing a

Taylor expansion in |gtt| for these, we find

∂L

∂Ei
= 〈J i〉

√

guu

|gtt|
+ O

(

√

|gtt|
)

. (4.15)

In the Θt
µ, these appear multiplied by E, Bx and Bz, so that the integral over u produces a

divergence at u = uH . We note in passing that ∂L
∂Bx

, ∂L
∂By

, and ∂L
∂Bz

have no such divergences

(for each, the leading term is
√

|gtt|).
Following ref. [9], we can relate the coefficients of the divergent terms with the loss

rates in eq. (4.13) as follows. On the SYM theory side, the divergences come from the

infra-red (IR): the charges have been losing energy and momentum at constant rates for

infinite time. To regulate the divergence, then, we want to consider charges moving for

some finite time ∆t. We can then identify the divergences in the Θt
µ as the constant rates

times ∆t: ∂t〈T t
µ〉∆t. On the supergravity side, we should only include those parts of the

spacetime that had time to communicate with the boundary in the time ∆t. In particular,

we would like the boundary to communicate with the horizon. We thus define ∆t as the

time required for a light ray to travel from the boundary to the horizon,

∆t =

∫ uH−ǫ

0
du

√

guu

|gtt|
, (4.16)

where we have introduced a regulator to make ∆t finite: we integrate not to the horizon

uH but to some uH − ǫ. As ǫ → 0, ∆t diverges as 1
ǫ
. Clearly the divergences in the Θt

µ

are of the form in eq. (4.16). We thus plug eqs. (4.14) and (4.15) into our expressions
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for the Θt
µ above, and using eq. (4.16), we immediately reproduce the right-hand side of

eq. (4.13). The holographic calculation thus encodes the energy and momentum loss rates

in the coefficients of the u = uH divergences of the Θt
µ, as discussed previously in ref. [9].

As also discussed in ref. [9], we can find observers who will not see the charges lose

any energy or momentum. These observers will thus see no divergences; the energy and

momenta they measure will be “IR-safe.” We will identify two such observers, who we will

call observer 1 and observer 2.

Observer 1 moves along with the charges. In that observer’s reference frame, the

charges are at rest (and the surrounding plasma is moving past), so obviously observer

1 will not see the charges lose energy or momentum. Observer 1 should thus see no

divergences. More formally, observer 1 will have a four-velocity proportional to the charge

current, vµ
1 ∝ 〈Jµ〉. Notice that vµ

1 is thus covariantly constant, ∂µvν
1 = 0. The mass-energy

four-vector associated with observer 1 is then proportional to

Iµ
1 = 〈T µ

ν〉 vν
1 ∝ 〈T µ

ν〉 〈Jν〉,

and using ∂µ〈T µ
ν〉 = Fνα〈Jα〉, we can easily show that ∂µIµ

1 = Fαβ〈Jα〉〈Jβ〉 = 0, so Iµ
1

is a conserved current. Furthermore, Iµ
1 is free of divergences, that is, if we write the t

component explicitly,

It
1 = 〈T t

t〉〈J t〉 + 〈T t
x〉〈Jx〉 + 〈T t

y〉〈Jy〉 + 〈T t
z〉〈Jz〉, (4.17)

and insert our expressions for the 〈T t
µ〉 from our Θt

µ, we find that all the divergences (of

the form
√

guu/|gtt|) cancel exactly.

Observer 2 has four-velocity vµ
2 ∝ ǫµαβγFαβ〈Jγ〉. Notice that vµ

2 is again covariantly

constant, ∂µvν
2 = 0, because the currents and external fields are constant. Notice also that

observer 2 is moving orthogonally to observer 1, that is, their four-velocities are orthogonal:

vµ
1 v2 µ ∝ 〈Jµ〉 ǫµαβγ Fαβ 〈Jγ〉 = 0. In fact, in the language of section 4.2 of ref. [47], vµ

2 is

(proportional to) the magnetic field as measured by observer 1. The mass-energy four-

vector of observer 2 is

Iµ
2 = 〈T µ

ν〉 vν
2 ∝ 〈T µ

ν〉 ǫναβγ Fαβ 〈Jγ〉,
and again using ∂µ〈T µ

ν〉 = Fνα〈Jα〉, we can easily show that ∂µIµ
2 ∝ (F ∧ F ) J2, where

J2 = Jµ Jµ, so Iµ
2 is only a conserved current when F ∧ F ∝ ~E · ~B = 0. In other

words, when ~E · ~B is nonzero we should have ∂tI
t
2 ∝ (F ∧ F ) J2, so that, as we saw

for the stress-energy tensor, we should find a divergence in It
2 whose coefficient is the

loss rate, (F ∧ F )J2. Indeed, a straightforward calculation shows that It
2 includes the

usual
√

guu/|gtt| divergence, with coefficient (F ∧ F ) J2. Observer 2 only sees an “IR-safe”

conserved current Iµ
2 when ~E · ~B = 0.

5 Conclusion

Using the holographic setup described in section 2, we computed the conductivity tensor,

and the contribution to the stress-energy tensor, of N = 2 supersymmetric flavor fields

propagating through a strongly-coupled N = 4 SYM theory plasma at temperature T .
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We included a finite U(1)B density 〈J t〉 and considered the most general configuration of

constant external fields, namely an electric field E and a magnetic field with a component

Bz perpendicular to E and a component Bx parallel to E. We also discussed divergences

in the flavor fields’ contribution to the stress-energy tensor, and discussed some “IR-safe”

quantities that are free from these divergences.

We will suggest three obvious directions for future research. The first would be a direct

extension of our work, while the latter two would be tangentially related.

First, as mentioned in the introduction, we could study transport of the charge as-

sociated with the current Iµ
2 discussed in section 4. In particular, the authors of ref. [20]

(following the results of refs. [18, 19]) showed that associated with any current with an ~E · ~B
anomaly is a special transport coefficient whose form is fixed by the anomaly coefficient

and the equation of state. Our Iµ
2 appears to be such an anomalous current, hence the

kinetic coefficient associated with transport of Iµ
2 charge should take the form determined

in ref. [20].

Second, we could introduce a thermal gradient into the holographic setup and compute

the thermal conductivity and the thermo-electric transport coefficients (called αij in the in-

troduction) associated with the flavor fields. A further extension would be to work with two

coincident D7-branes, and hence two flavors in the SYM theory, and to compute the ther-

mal conductivity and thermo-electric transport coefficients associated with isospin charge.

As demonstrated in refs. [48–50], a sufficiently large isospin chemical potential triggers a

phase transition to a superconducting (more accurately, superfluid) phase, so a holographic

study of thermo-electric transport may be relevant for high-Tc superconductors, which ex-

hibit unusually large thermo-electric response even outside the superconducting phase.

Third, we could compute the full conductivity tensor of N = 4 SYM theory itself

(without flavor), which remains to be done. To date, only the longitudinal conductivity,

which we called σxx, has been computed. To compute σxy and σxz for N = 4 SYM theory

holographically would require new supergravity solutions, however. In particular, a nonzero

Hall current requires a nonzero density and a nonzero magnetic field, hence we would first

need to find a supergravity solution describing a dyonic black hole. Such a solution exists

for (3+1)-dimensional AdS, but not yet for (4+1)-dimensional AdS.
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A Derivatives of the on-shell action

In this appendix we write explicit expressions for derivatives of the on-shell action with

respect to various fields, as mentioned in section 4.

For notational simplicity, we first define a function

d(u) = guu|gtt|g3
xx − gxxA2 − A4, (A.1)

where A2 and A4 were defined in eqs. (2.10) and (2.11), which we repeat here for complete-

ness:

A2 = guugxxẼ2 + gttguu(B̃2
x + B̃2

z ) + g2
xxÃ

′2
t + gttgxx

(

Ã
′2
x + Ã

′2
y + Ã

′2
z

)

, (A.2)

A4 = gxxẼ2
(

Ã
′2
y + Ã

′2
z

)

+ gxxÃ
′2
t

(

B̃2
x + B̃2

z

)

+ guuẼ2B̃2
x + gttB̃

2
z Ã

′2
z + gttB̃

2
xÃ

′2
x

+2gttB̃xB̃zÃ
′
xÃ′

z − 2gxxẼB̃zÃ
′
tÃ

′
y. (A.3)

Recall from section 2 that in our notation guu represents the uu component of the induced

D7-brane metric: guu = 1
u2 + θ′(u)2.

The derivatives ∂L
∂Fµν

, evaluated on our solution, are

∂L

∂Ex
=

N cos3 θ
√

d(u)

[

gxxB̃zÃ
′
tÃ

′
y − Ẽ

(

guu

(

g2
xx + B̃2

x

)

+ gxx

(

Ã
′2
y + Ã

′2
z

))]

,

∂L

∂Ey
=

N cos3 θ
√

d(u)

[(

ẼÃ′
xÃ′

y + B̃xÃ′
tÃ

′
z − B̃zÃ

′
tÃ

′
x

)

gxx

]

,

∂L

∂Ez
=

N cos3 θ
√

d(u)

[

gxxẼÃ′
xÃ′

z − gxxB̃xÃ′
tÃ

′
y − guuẼB̃xB̃z

]

,

∂L

∂Bx
=

N cos3 θ
√

d(u)

[

B̃x

(

guu|gtt|gxx + |gtt|Ã
′2
x − gxxÃ

′2
t − guuẼ2

)

+ |gtt|B̃zÃ
′
xÃ′

z

]

,

∂L

∂By
=

N cos3 θ
√

d(u)

[

|gtt|B̃xÃ′
xÃ′

y + |gtt|B̃zÃ
′
yÃ

′
z − gxxẼÃ′

tÃ
′
z

]

,

∂L

∂Bz
=

N cos3 θ
√

d(u)

[

B̃z

(

guu|gtt|gxx + |gtt|Ã
′2
z − gxxÃ

′2
t

)

+ |gtt|B̃xÃ′
xÃ′

z + gxxẼÃ′
tÃ

′
y

]

.

The variations with respect to the ∂µθ (with µ = t, x, y, z), evaluated on our solution, are

δL

δ∂tθ
= −N cos3 θ

√

d(u)

[

B̃xB̃zÃ
′
z + Ã′

x

(

g2
xx + B̃2

x

)]

Ẽ θ′,

δL

δ∂xθ
= −N cos3 θ

√

d(u)

[

|gtt|gxxB̃zÃ
′
y − ẼÃ′

t

(

g2
xx + B̃2

x

)]

θ′,

δL

δ∂yθ
= −N cos3 θ

√

d(u)

[

B̃xÃ′
z

(

|gtt|gxx − Ẽ2
)

− |gtt|gxxB̃zÃ
′
x

]

θ′,

δL

δ∂zθ
= +

N cos3 θ
√

d(u)

[

ẼB̃zÃ
′
t + Ã′

y

(

|gtt|gxx − Ẽ2
)]

B̃x θ′.
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